Skip to main content

Advertisement

Log in

The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Mitochondrial permeability transition (MPT) is critical in cardiomyocyte death during reperfusion but it is not the only mechanism responsible for cell injury. The objectives of the study is to investigate the role of the duration of myocardial ischemia on mitochondrial integrity and cardiomyocyte death. Mitochondrial membrane potential (ΔΨm, JC-1) and MPT (calcein) were studied in cardiomyocytes from wild-type and cyclophilin D (CyD) KO mice refractory to MPT, submitted to simulated ischemia and 10 min reperfusion. Reperfusion after 15 min simulated ischemia induced a rapid recovery of ΔΨm, extreme cell shortening (contracture) and mitochondrial calcein release, and CyD ablation did not affect these changes or cell death. However, when reperfusion was performed after 25 min simulated ischemia, CyD ablation improved ΔΨm recovery and reduced calcein release and cell death (57.8 ± 4.9% vs. 77.3 ± 4.8%, P < 0.01). In a Langendorff system, CyD ablation increased infarct size after 30 min of ischemia (61.3 ± 6.4% vs. 45.3 ± 4.0%, P = 0.02) but reduced it when ischemia was prolonged to 60 min (52.8 ± 8.1% vs. 87.6 ± 3.7%, P < 0.01). NMR spectroscopy in rat hearts showed a rapid recovery of phosphocreatine after 30 min ischemia followed by a marked decay associated with contracture and LDH release, that were preventable with contractile blockade but not with cyclosporine A. In contrast, after 50 min ischemia, phosphocreatine recovery was impaired even with contractile blockade (65.2 ± 4% at 2 min), and cyclosporine A reduced contracture, LDH release and infarct size (52.1 ± 4.2% vs. 82.8 ± 3.6%, P < 0.01). In conclusion, the duration of ischemia critically determines the importance of MPT on reperfusion injury. Mechanisms other than MPT may play an important role in cell death after less severe ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdallah Y, Iraqi W, Said M, Kasseckert SA, Shahzad T, Erdogan A, Neuhof C, Gunduz D, Schluter KD, Piper HM, Reusch HP, Ladilov Y (2010) Interplay between Ca(2+) cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. J Cell Mol Med. doi:10.1111/j.1582-4934.2010.01249.x

  2. Altschuld RA, Wenger WC, Lamka KG, Kindig OR, Capen CC, Mizuhira V, Vander Heide RS, Brierley GP (1985) Structural and functional properties of adult rat heart myocytes lysed with digitonin. J Biol Chem 260:14325–14334

    PubMed  CAS  Google Scholar 

  3. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662. doi:10.1038/nature03434

    Article  PubMed  CAS  Google Scholar 

  4. Barba I, Jaimez-Auguets E, Rodriguez-Sinovas A, Garcia-Dorado D (2007) 1H NMR-based metabolomic identification of at-risk areas after myocardial infarction in swine. MAGMA 20:265–271. doi:10.1007/s10334-007-0097-8

    Article  PubMed  CAS  Google Scholar 

  5. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561. doi:10.1074/jbc.C500089200

    Article  PubMed  CAS  Google Scholar 

  6. Cohen MV, Yang XM, Downey JM (2008) Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 103:464–471. doi:10.1007/s00395-008-0737-9

    Article  PubMed  Google Scholar 

  7. Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276:2571–2575. doi:10.1074/jbc.M006825200

    Article  PubMed  CAS  Google Scholar 

  8. Duchen MR, McGuinness O, Brown LA, Crompton M (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27:1790–1794. doi:10.1093/cvr/27.10.1790

    Article  PubMed  CAS  Google Scholar 

  9. Ferrera R, Benhabbouche S, Bopassa JC, Li B, Ovize M (2009) One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model. Cardiovasc Drugs Ther 23:327–331. doi:10.1007/s10557-009-6176-5

    Article  PubMed  CAS  Google Scholar 

  10. Francone M, Bucciarelli-Ducci C, Carbone I, Canali E, Scardala R, Calabrese FA, Sardella G, Mancone M, Catalano C, Fedele F, Passariello R, Bogaert J, Agati L (2009) Impact of primary coronary angioplasty delay on myocardial salvage, infarct size, and microvascular damage in patients with ST-segment elevation myocardial infarction: insight from cardiovascular magnetic resonance. J Am Coll Cardiol 54:2145–2153. doi:10.1016/j.jacc.2009.08.024

    Article  PubMed  Google Scholar 

  11. Garcia-Dorado D, Ruiz-Meana M, Piper HM (2009) Lethal reperfusion injury in acute myocardial infarction: facts and unresolved issues. Cardiovasc Res 83:165–168. doi:10.1093/cvr/cvp185

    Article  PubMed  CAS  Google Scholar 

  12. Garcia-Dorado D, Theroux P, Duran JM, Solares J, Alonso J, Sanz E, Munoz R, Elizaga J, Botas J, Fernandez-Aviles F (1992) Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85:1160–1174. doi:10.1161/01.CIR.85.3.1160

    PubMed  CAS  Google Scholar 

  13. Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117:2761–2768. doi:10.1161/CIRCULATIONAHA.107.755066

    Article  PubMed  CAS  Google Scholar 

  14. Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469. doi:10.1006/jmcc.1993.1162

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98

    PubMed  CAS  Google Scholar 

  16. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  17. Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 60:617–625. doi:10.1016./j.cardiores.2003.09.025

    Article  PubMed  CAS  Google Scholar 

  18. Heusch G (2004) Postconditioning: old wine in a new bottle? J Am Coll Cardiol 44:1111–1112. doi:10.1016/j.jacc.2004.06.013

    Article  PubMed  Google Scholar 

  19. Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the Holy Grail of cardioprotection. Basic Res Cardiol 105:151–154. doi:10.1007/s00395-009-0080-9

    Article  PubMed  Google Scholar 

  20. Iliodromitis EK, Downey JM, Heusch G, Kremastinos DT (2009) What is the optimal postconditioning algorithm? J Cardiovasc Pharmacol Ther 14:269–273. doi:10.1177/1074248409344328

    Article  PubMed  Google Scholar 

  21. Inserte J, Barba I, Poncelas-Nozal M, Hernando V, Agullo L, Ruiz-Meana M, Garcia-Dorado D (2011) cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J Mol Cell Cardiol 50:903–909. doi:10.1016/j.yjmcc.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  22. Inserte J, Barrabes JA, Hernando V, Garcia-Dorado D (2009) Orphan targets for reperfusion injury. Cardiovasc Res 83:169–178. doi:10.1093/cvr/cvp109

    Article  PubMed  CAS  Google Scholar 

  23. Karlsson LO, Zhou AX, Larsson E, Astrom-Olsson K, Mansson C, Akyurek LM, Grip L (2010) Cyclosporine does not reduce myocardial infarct size in a porcine ischemia-reperfusion model. J Cardiovasc Pharmacol Ther 15:182–189. doi:10.1177/1074248410362074

    Article  PubMed  CAS  Google Scholar 

  24. Ladilov Y, Efe O, Schafer C, Rother B, Kasseckert S, Abdallah Y, Meuter K, Dieter SK, Piper HM (2003) Reoxygenation-induced rigor-type contracture. J Mol Cell Cardiol 35:1481–1490

    Article  PubMed  CAS  Google Scholar 

  25. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423. doi:10.1093/cvr/cvq129

    Article  PubMed  CAS  Google Scholar 

  26. Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734. doi:10.1016/S0006-3495(99)77239-54

    Article  PubMed  CAS  Google Scholar 

  27. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, Andre-Fouet X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481. doi:10.1056/NEJMoa071142

    Article  PubMed  CAS  Google Scholar 

  28. Piper HM, Abdallah Y, Schafer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371371. doi:10.1016/j.cardiores.2003.12.012

    Article  PubMed  CAS  Google Scholar 

  29. Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300

    Article  PubMed  CAS  Google Scholar 

  30. Quayle JM, Turner MR, Burrell HE, Kamishima T (2006) Effects of hypoxia, anoxia, and metabolic inhibitors on KATP channels in rat femoral artery myocytes. Am J Physiol Heart Circ Physiol 291:H71–H80. doi:10.1152/ajpheart.01107.2005

    Article  PubMed  CAS  Google Scholar 

  31. Rodriguez-Sinovas A, Sanchez JA, Gonzalez-Loyola A, Barba I, Morente M, Aguilar R, Agullo E, Miro-Casas E, Esquerda N, Ruiz-Meana M, Garcia-Dorado D (2010) Effects of substitution of Cx43 by Cx32 on myocardial energy metabolism, tolerance to ischaemia and preconditioning protection. J Physiol 588:1139–1151. doi:10.1113/jphysiol.2009.186577

    Article  PubMed  CAS  Google Scholar 

  32. Ruiz-Meana M, Abellan A, Miro-Casas E, Agullo E, Garcia-Dorado D (2009) Role of sarcoplasmic reticulum in mitochondrial permeability transition and cardiomyocyte death during reperfusion. Am J Physiol Heart Circ Physiol 297:H1281–H1289. doi:10.1152/ajpheart.00435.2009

    Article  PubMed  CAS  Google Scholar 

  33. Ruiz-Meana M, Abellan A, Miro-Casas E, Garcia-Dorado D (2007) Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102:542–552. doi:10.1007/s00395-007-0675-y

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz LM, Lagranha CJ (2006) Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol 290:H1011–H1018. doi:10.1152/ajpheart.00864.2005

    Article  PubMed  CAS  Google Scholar 

  35. Schwarz ER, Somoano Y, Hale SL, Kloner RA (2000) What is the required reperfusion period for assessment of myocardial infarct size using triphenyltetrazolium chloride staining in the rat? J Thromb Thrombolysis 10:181–187

    Article  PubMed  CAS  Google Scholar 

  36. Skyschally A, Schulz R, Heusch G (2010) Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther 24:85–87. doi:10.1007/s10557-010-6219-y

    Article  PubMed  Google Scholar 

  37. Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi:10.1007/s00395-009-0040-4

    Article  PubMed  Google Scholar 

  38. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148. doi:10.1161/CIRCULATIONAHA.105.558122

    Article  PubMed  Google Scholar 

  39. Sumida T, Otani H, Kyoi S, Okada T, Fujiwara H, Nakao Y, Kido M, Imamura H (2005) Temporary blockade of contractility during reperfusion elicits a cardioprotective effect of the p38 MAP kinase inhibitor SB-203580. Am J Physiol Heart Circ Physiol 288:H2726–H2734. doi:10.1152/ajpheart.01183.2004

    Article  PubMed  CAS  Google Scholar 

  40. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110. doi:10.1016/j.jacc.2004.05.060

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish Ministry of Science and Instituto de Salud Carlos III (RETICS-RECAVA RD06/0014/0025; CICYT SAF/2008-03067, FIS-PI080238 and PS09/02034). Ignasi Barba is recipient of a Ramon y Cajal fellowship.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Garcia-Dorado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1: Sequence of confocal images (60×) of 2 cardiac myocytes isolated from a wild-type mouse heart loaded with JC-1, under baseline conditions, after 15 min simulated ischemia, and during the first minutes of reperfusion. The graph corresponds to ΔΨm kinetics of these 2 cells throughout ischemia-reperfusion (arrow points the onset of reperfusion).

Supplementary Figure 2: Confocal images (60×) of a wild-type JC-1 loaded cardiac myocyte under baseline conditions, at 15 min of simulated ischemia, and after 3 min of reperfusion in the presence of the contractile blocker BDM (15 mmol/L). The graph corresponds to ΔΨm kinetics of this cell throughout 15 min ischemia-10 min reperfusion (arrow points the onset of reperfusion).

Supplementary material 1 (PPT 2202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Meana, M., Inserte, J., Fernandez-Sanz, C. et al. The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia. Basic Res Cardiol 106, 1259–1268 (2011). https://doi.org/10.1007/s00395-011-0225-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0225-5

Keywords

Navigation